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Brittleness, ductility, and the Griffith crack
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The material properties which determine whether a solid will fail by brittle fracture or ductile deformation
are theoretically investigated by including the leading-order dissipative term describing plastic flow in the
equations of elasticity. In particular, this term yields a time scale for the blunting of the elastic crack tip
described by Griffith. This time scale is compared to the elastic response time of a solid to determine whether
the solid will sustain the high stresses characteristic of a crack tip or will plastically relax the elastic strains.
These dissipative equations of elasticity also describe the “work-hardened” state of a solid, where brittle
fracture becomes possible in an originally ductile sdl#1063-651X97)10406-§

PACS numbe(s): 05.70.Ln, 62.20.Hg, 62.20.Fe, 81.40.Lm

Despite their obvious engineering relevance, the conceptshere o; is the force in thej direction per unit surface
of brittleness and ductility remain only empirically and phe- perpendicular to thé direction, T is the (isotropig tension
nomenologically defined. Brittle materials fail by crack- imposed at infinity, andry denotes the surface of the ellip-
induced fracture while in ductile ones voids grow, coalescetical void. These solutions satisfy the boundary conditions of
and multiply to weaken the solid. In an effort to quantify this vanishing shear stress and perpendicular stress at the surface,
difference, this paper discusses the stability of a crack timnd correspond to displacements given by

against plastic deformation. By including the leading-order )

dissipative term characteristic of elastic solids, the time scale leT h
appropriate to plastic relaxation of the elastic strains at a®~a~h g, [(p—1)coshzy—(p+1)cosPB+2 coshzr]
crack tip is compared to the speed of the elastic response (4)

itself. This comparison determines whether the large stresses
characteristic of brittle fracture can be sustained in the soliéind 6R;=0. Hereh is the modulus of the transformation to
or whether the solid yields plastically to the externally im- elliptical coordinates, viz.h=cy/(cosh2r—cos)/2, u is
posed forces. In addition the dissipative term in elasticitythe shear modulus of the material, apet 3— 40 for plane
admits a solution which describes a “work-hardened” state strain, wherar is Poisson’s ratio. This solution is depicted in
where brittle fracture can occur even in an originally ductileFig. 1.

solid. The stress concentration is apparent by evaluatipg,

The modern theory of fracture mechanics is based on thgq. (2), at the tip of the ellipséa=ay, 8=0), which finds
calculation by Inglif1] of the stresses and strains surround—gﬁﬁzzTa/b, wherea andb are the major and minor axes
ing an elliptical hole in an elastic plane stressed at infinity.of the ellipse, respectively. As the ellipse becomes more
His solution indicates the geometrical enhancement of thglender, the stress concentration at the tip grows larger. The
externally imposed stress at the tips of the elliptical shapestress in the perpendicular directioa (,) is forced to van-
Griffith [2] used this solution to analyze the strength of ma-ish right at the surface, but one can readily use the solution
terials, which most frequently fracture at imposed stressegl) above to calculate where this stress reaches its maximum.
orders of magnitude below the theoretically predicted valuesFor slender ellipses, the maximum stress along the major
Griffith postulated that microscopic flaws, in the form of axis is reached air=aq+(1+v3)b/a, and thereo,,
cracks, focus the applied tension to exceed the elastieeT(2a/9b). As the ellipse becomes more cracklike, the
strength of the solid and cause the failure of the material. By
comparing the observed and calculated tensile strengths of
glass, Griffith reconciled these observations by calculating
the typical size of intrinsic flaws. b

The Inglis solution, as presented in elliptical coordinates
defined byx+iy=c cosh@+ig), wherec is the focal length O == Gy
of the ellipse, is as follows:

sinh2x(cosh2v— cosh2y)

Toa (coshzv—cosPB)? @
. _ FIG. 1. The Inglis solution for an elliptical void in a uniformly
0pp= sinh2x(cosh2x+ coshav 5 2c0sB) ) 2) stressed plane. The stress at infinity is amplified at the crack tip,
(cosh2y—cos) where the tensile stress reaches a maximdita2b). The perpen-
. dicular stress is forced to vanish at the surface, but for sufficiently
P sin2B(cosh2v— coshx) 3) narrow ellipses reaches a maximum valueT¢2a/9b) just ahead
@B (coshzvr—cosB)? of the crack tip.
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point of maximum stress in the perpendicular directionwhich expresses conservation of momentum,

moves closer to the surface, but the maximum stress in the

perpendicular direction remains smaller than the maximum @Jrvj s7i=0 )
tensile stress. In Griffith’s model of fracture, the crack as- at psy="=h

sumes an aspect ratia/p) such that the tensile stress atthe ]

crack tip precisely equals the cohesive strength of the solidVhich expresses conservation of entropy, and

i.e., alb~u /T, where u. is the cohesive strength of the IR

solid. If the cohesive strength scales as the bulk modulus, an — 4 (¥ ﬁ)Rizo, (8)
assumption supported by both measurements and simple ot

phenomenological arguments for the strength of a solid, this | . . . . .
relation simplifies toa/b~ w/T. This latter criterion for the Wthh (_jescrlbes hc_)w Eh? Iat_tlce dlstorts._ In thiese _equatlons,
aspect ratio is also the one set by requiring that in the ap?(":t) iS the density,5(r,t) is the velocity,s(rt) is the
sence of external forces the solid should close up and beentropy per gram, an&(r,t) is the position at time 0 of a
come whole. This translates into setting the displacement dfttice point which at timet is at . By requiring energy
the solid at the end of the minor axia= oy, B=m/2) equal ~ conservation, one can derive expressions for the pressure,
to its current locatio. Since Griffith’s experimental obser- - s

vations found an experimental yield stress in glass roughly P=xV-(R=F),

400 times smaller than the theoretically predicted one, he
assumed that internal cracks focused the external stresses %?/d the shear stress tensor,

this amount. He then reasoned that intrinsic defects in the JR IR 2 - -
glass under investigation should have an aspect ratio of that Tij=M FJF W-]_ 3 (V-R)&jj |,
order. By assuming that the smallest radius of curvapre | !

=(b?/a) possiblg in a solid corresponds to an atomic size
i.e., measured in Agstrans, Griffith found that the intrinsic

cracks in his glass specimens wergdh long. tions of elasticity, Eqs(5)—(8), differ from the Euler equa-

Griffith’s model of fracture rests on the assumption thatt' ns of fluid mechanics by the existence of the shear stress
the tendency for elastic solids is to focus large stresses arta) y

wherex and u are the bulk and shear moduli, respectively.
In Egs. (1)—(4), gij=Pé;+ 7; and SR=r—R. The equa-

strains at the crack tip. However, beyond certain stress leve Snsor, and the subsequent need for @yto close the equa-

solids typically display plastic deformatid®] and resist in- ons.

. X Eckart[6] introduced a general method of calculating the
creasing stram, and even at low s_tre_s§ levels creep and relafé)'west—order dissipative fluxes corresponding to a macro-
ation mechanisms act to slowly diminish elastic stre$dés

To describe how elastic strains may be plastically relaxed °P'C continuum theory by requiring that energy be con-

and to address the question of the stability of a crack tipserved and that entropy production be positive. For an Eule-

against plastic deformation | will include the Ieading-orderrlan fluid, this method yields the familiar terms describing

dissipative term in the equations of elasticity. This term,vISCOSIty and thermal conductivity, and thus "derives” the

which describes the diffusion of dislocations through a solid,'\la\”er_StOkes equations. Applied to the equations of elastic-

depends both on the elastic stresses and on specific materﬁ%’ this method yields in addition to viscosity and thermal

properties, which may be rate and history dependent. Onc%eorrr]]?lil(:iwg)é’ ;ghs'g:}§g6aﬂ8?$ﬁiaoﬁhozﬁiQggglei%dé: damping
these material-specific properties are identified, one can meé— q q

sure them in macroscopic experimental systems where plas- oS - 2
tic effects form merely a perturbative correction to the elastic —+V-psv= d(—J) , 9)
fields. Such systems include creep experiments which mea-

sure the slow plastic deformation due to small Iongitudinal,and Eq.(8) as
torsional, and bending loads. Given the elastic solution

which describes a crack Eqg1)—(4)] and the(experimen- . i
tally measurefldissipative equations of state one can deter- —r T V)Ri=d —. (10
mine whether elastic or plastic effects dominate at the crack !

tip. Specifically one might predict the circumstances undeiyere d is a diffusion constant, which we assume is propor-
which an elliptical shape will sharpen towards the cracklikegjonal to the number of dislocations in the solid, so that a

limit or blunt so as to prevent brittle fracture. ~perfect lattice will not plastically distort. This additional term
Equations (1)—(4) above are solutions to the classical gescribes the diffusion of dislocations through the lattice,
equations of elasticity5]: which flow in response to gradients in the shear stidéste

that in Egs.(9) and (10) viscoelastic terms, which imply an
exponential relaxation of elastic shear stresses on some char-
acteristic time scale, have been suppressed. The viscoelastic
dissipative terms, which follow from thermodynamic argu-
ments similar to those abov®,8], render the elastic solid
unable to maintain any shear stress. In that sense, (Bgs.
and (10) represent the leading-order dissipative contribution
&gtvi N % (pwjv;+ P, +75)=0, (6) 1o the robust elastic solid state, which supports a uniform
j shear; that is the regime of interest for this analysis.

E+V'pv=0, (5)

which expresses conservation of mass,
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the crack tip itself is
vola=ag,B= )—a——Tﬁg 3 3P @D

The time scale associated with rate of decrease of the tensile

\' / stress at the tip of a narrow crack&b) is given by
O-B.B a a2T2

. (19)

FIG. 2. The plastic flow associated with the Inglis crack. The |t gne scales the cohesive strength with the bulk modulus,
tendency of the plastic flow is to deform the elliptical void into a {hig simplifies toa/a~ b2/,ud. Clearly, depending on the
circle, which acts to blunt the crack_tip. The rate of blunting at thevalue ofd, plastic effects resist the sharpness of the crack
crack tip is approximately given by/a~b?/ud. If this time scale tip; the value of the diffusion constant sets the time scale at
Is shorter th"?m the E|as.t'° response time, the So"q will not SUPPOIt & hich plastic effects dominate elastic ones and eliminate
crack and will deform in a ductile, rather than brittle, fashion. stress singularities. Elastic responses can be estimated to
travel at the speed of sound in the material, with a charac-
nal equation, one needs also to specify a new boundary cofgristic time scal_e given bg/cs, _wherec$ is the speed of .
dition. To lowest order in the strains, one can rewrite Eq_sound in the SO“_d' For mos_t solids the_ time scale for elastic
(10) as response o_f a mlcromet_er-5|zed crack is a}bout a nano;eqond.

If the elastic response is much more rapid than the dissipa-
IR; T tive one, the solid.will behaye as a brittle one. If dissipation
Vit T 0 e (11 dominates, the high elastic stress concentrations such as
! those characterizing a crack tip will never be realized. The
In order that the surface of the solid be unambiguously detatio of these time scales determines a measure of the relative

Since Eq.(10) contains a higher derivative than the origi-

fined, we take as the boundary condition, degree of brittleness of a material; namely, if
IR : aT?c
Ve =—| — =1, (12) ——>1, (19
dug
surface

where v, is the perpendicular component of the surfacethe material is brittle, and if the inequality is of opposite
velocity andl is the dimension of the solid body. By conti- sense, the material is ductile. Note that as the cohesive
nuity, Eq.(5), strength of the solid increases the material becomes more
ductile, and agl, the measure of inelastic deformation, in-
vg = v, (surface, (13 creases, the material also becomes more ductile. Finally, for

. , fixed material parameters, a larger geometric crack size will
the perpendicular component of the bulk velocity evaluateqnake the solid behave in a more brittle fashion. In fatigue

at the surface. Combining Eqel0)—(12) yields experimentd 9], the ductile time scalé18) should be com-
Ir pared to the frequency with which the externally applied
d( “) =0, (14)  stress is ramped up and down. If the periods are sufficiently
I | surtace long that elastic strains can be relaxed during the low-stress

phase, brittle fracture will be suppressed.
the dissipative term is required to vanish at the surface. One pa different approach to the issue of distinguishing brittle-
way to SatiSfy this condition is by Iettlmj—>0 at the surface, ness and duc“hty, pioneered by Armstro[{g)], compares
which states that the dislocations annihilate as they hit thg‘]e stress necessary to propagate a Griffith crack by C|ea\/age
surface. The formal solution to E|astiCity with a small plastiCto the stress required to nucleate dislocation |00ps at the
flow is obtained by putting Eq11) into Egs.(5), (6), and(9)  crack tip. The comparison yields the dimensionless param-
to obtain a closed theory fdR, p, ands. eter y/uby, where y is the surface energy arl is the
Subject to the boundary conditidi4) one can solve for  Burgers vector of the dislocation, which scales as the lattice
the dissipative flow inherent in the Inglis solution by putting spacing. The greater this Armstrong ratio, the more ductile
Eq. (4) into Eq. (11): the crystal, and vice versa. This comparison involves char-
d T 1“2 acterizing the microscopic nature of the cohesive forces and
v =— :“_5 cr (cosh2x cosZB—l)(—— < p), (15) the dislocation structures, and thg parameter rather success-
h> 8u 3 3 fully encapsulates the macroscopic effects of changes at the
microstructural level. However, its extension to systems
lacking crystalline symmetry is unclear, and the experimen-
3 3 p). (16 tal determination of the microscopic parameters involved is
nontrivial.
Here the tendency of the plastic flow is to distort the ellipti- Independently, Kelly, Tyson, and Cottréll1] defined the
cal shape into a circular or€ig. 2). The rate of blunting of relative brittleness of a crystal by comparing the maximum

wud c*T , 14
L @ (sinh2x sin2B)
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tensile stress and the maximum shear stress achieved indifusion constant is much lower; time-dependent
given apparatus as the external load was increased. Dependkformation-mechanism maps for Type 316 stainless steel
ing on the load conditions and the crystalline structure, th¢17] suggest that the relevant time scale is microseconds, and
crystal's cohesive strength or ideal shear strength would btherefore the transition from ductile to brittle behavior in
reached first, resulting, respectively, in cleavage or plastiatigue experiments should occur at MHz frequencies. In
deformation. Rice and Thoms¢th2] explicitly modeled the these examples we have used valuesdarbtained at low
production of a blunting dislocation at the crack fguch  stresses to estimate the response of a highly stressed region.
that its slip plane contains the crack [jn&heir model speci- In fact, if d is itself a function of the stress, the value which
fies a mechanism by which the competition between craclpertains to the crack tip differs from that measured in a creep
propagation and plastic crack tip blunting can take place, andxperiment. However, the plastic deformation described by
their rigorous calculation of this mechanism recovers theEgs. (15 and (16) is a bulk flow phenomenon, involving

Armstrong criterion: regions of both high and low stress, and therefore the effec-
tive d, which is an average over an area much greater than
Y the crack tip, should be reasonably well estimated by the

,U«bd>7_10 (20 creep-determined.

The observation in many materials of a hardening transi-

for ductile fracture. More recent approact&8] generalize tion from ductile to brittle behaviof3] as a solid is repeti-
the Rice-Thomson calculation to consider geometrical astively stressed suggests that the above formalism is concep-
pects of dislocation emission and external loading via dually incomplete. However, rather than applying the
Peierls-Nabarro framework. Introduction of the “unstable boundary condition above, which assumes that the concen-
stacking energy” as a parameter determining the energy batration of dislocations vanishes at the surface of the crack,
rier to dislocation emission introduces the opportunity forone can consider the scenario where dislocations cannot pass
atomistic refinements of the Rice-Thomson criterion abovethrough the surface and annihilate. In this case we suppose
The competition between brittle cleavage and dislocatiorthat dislocations build up in a surface layer, so thadoes
emission has also been considered in dynamic fradti#ée  not vanish at the surface. Then the boundary conditich

The expression$20) and (19) above predict similar de- implies thatdr ;/Jr;=0 at the surface. In addition the ex-
pendence of the brittleness of a solid on, e.g., the cohesivistence of such a surface layer implies that there is a discon-
strength of the material, but EGR0) explicitly depends on tinuity in the perpendicular stress at the surface. If one solves
the microscopic dislocation size. The constdrih Egs.(18)  the equations of elasticity for the equilibrium of an elliptical
and(19) above can presumably be written in terms of micro-hole in a uniformly stressed plane, subject to the boundary
scopic parameters for specific materials, but has been deonditions of vanishing shear stress and vanishing perpen-
duced from strictly thermodynamic, macroscopic reasoningdicular gradient of the shear stress on the surface, the Inglis
Thus the value ofi can be determined from a simpler ex- solution(1)—(4) is replaced by
periment, such as the creep of a bar under its own weight,
where the stresses are low and the system is well described T sinh2y
by elasticity, modified by a small dissipative correction. The =~ “Zaa™ 5 (cosh2y— cosB)?
rate of decrease of the height of a solid in a gravitational field

1
(Zcosh2>z+—§ (p—1)

[15], which is derived by using the solutions to E§)—(7) 1
above and putting that solution into E@.1), is X coshZvgt 3 (p—7)c0528>, 22
- 4 pupg T sinh2x 1
R & 788~ {coshzr—cosp)?| 2 0N+ 3 (P~ 1)
wherel is the height of the bar anfl is Young’s modulus. 1
Measurement of the rate of creep of the bar thus yields X coshzyy+ — 3 “OJFS)COSZB)’ (23
which then sets the time scale in E{.8) for given crack
dimensions. Rayleighl6] observed that certain heat-treated T sin28(cosh2y— coshy,)
specimens of marble, including some mantelpieces, would Tup=7% (p—1) — (29
creep under their own weight on a time scale of weeks, while 6 (cosh2y—cos2B)
most marble samples showed no evidence of such deforma-, . _
tion. Using Rayleigh’s observations on the creep of such é(Vh'Ch corresponds to displacements of
marble mantelpiecgl6] to find d from Eq. (21) and Grif- 1c2T(p—1) 4 1
fith’s estimate of the crack dimensions of intrinsic flaws in s -~ citph (coshb— ~ COSB+ = cosh&o)
Eq. (18), one finds that the time scale for cracks to blunt is “ h 8u 3 3
measured in picoseconds. That implies that specimens of (25

such heat-treated marble should be considered candidates for o .
failure by ductile deformation rather than by brittle fracture, @d Rz=0. In the crack limit @>b) both the perpendicu-
which characterizes most marble. The observation of the sa¢@" @nd tensile stresses at the crack tip become singular,
ging of lead pipe$17] over time leads to an estimate of the

crack-blunting time scale of tens of picoseconds and to the oo (= ag,B=0)~ (7—p) T a (26)
classification of pure lead as a ductile material. In steel the o 0 6 b’




6730 RITVA LOFSTEDT 55

(p+5) _a obtained by evaluating them at,=0, 8=0, and then taking
oppla=ag,f=0)~—— T, (27 a—aq. In this limit the perpendicular stress &t *a no
longer vanishes; instead it is equal to the tensile stress, or,
but sincep~2 for most materials, the tensile stress exceed¥ <~ 9yy= 1a/b, which diverges since the aspect ratio is
the perpendicular one. infinite. The equivalence of the tensile and perpendicular
The plastic flow associated with this solution which is stresses at the crack tip is an artifact of the awkward order of
obtained by using Eq25) in Eq. (11) vanishes identically. limits taken in Egs.(1)—(3) to approach the infinitesimally

Thus when the boundary maintains a finite, steady distripulvide crack, which occurs neither in the full Inglis solution

tion of dislocations, the resultant elastic field in the solidEE%?'%)J(?;Orﬂ'pstge WogmigdZne?ezglrug&ﬂsgég5
resists plastic deformation. This “hardened” state is then - However, this equiv IS P vedl :

susceptible to fracture, since the stresses concentrated at i hesive zone model, which underlies many modern theories

crack tip cannot be dissipated, and the dynamics are 90\9 dynamic fracture, whose goal is to investigate instabilities
erned only by elastic forces. According to this model, the!" crack propagation20,21. The artificial equivalence of

transition from ductility to brittleness as observed in Workthe tensile and perpendicular stresses in this elastic model

hardening need not, therefore, involve a bulk transformatioﬁnakes the direction of crack propagation ill defined. Clearly,

of the material. but should be sianaled by a detectabl)}he instabilities in the direction of crack propagation which
defect-riddled s[Jrface In such casgs E@@)(l%) rather result from this ambiguity must be regarded as distinct from

than the Inglis solutior(1)~(4), should constitute the foun- true, dynamical deviations of the crack propagation from a

dation of a theoretical investigation of fracture. A descriptionStralght line.

of the hardening transition itself is much more complicated.Crazierg%r;ai?'tg Igzt?r?\lllgﬁis :tsesgc;?teir‘g’g&:r ”;ﬁ\é'r;g ég%l'zf
That would require incorporating into the creep equationcrack ropagation rovid(gs elt an%ther tilT’le sca[I)e with
(11) a time-dependent diffusion constautself-consistently hich tFC)J C(F))mg are thg effects o)f/ lasticity on the elastic equa-
determined as a function of the elastic stresses as disloca- pal ; p yor ) q
: . . lons. For sufficiently rapid crack propagation plastic effects
tions accumulate in the solid. might distort the fractured trail of the solid, but never reach
Most modern approaches to fracture mechanics exploit g crack tip itself. The steady-state rofilé of a “crack tip”
the powerful mathematical techniques related to singular in: P ' y P P

. - . _in a ductile solid might give insight into the workings of
tegral equation18]. These approaches reduce the EIIIptlcalfailure by plastic deformation. One might ask whether the

Ynoéd ;r? eir“r;?r'ezrs]dai%plg ;Ppiggilé:?;rigggglttlgnz (::a\;?:jt]- Prk-hardened surface possesses a stable crack profile in the
length Z (or equivalently 2) of thex axis. These equations ynamic state and from an engineering perspective consider
eng q ya) . . q effects of the environment, such as corrosion, on this profile
imply a square-root stress singularity at the ends of the cracltg]' Finally, given the dynamic equations describing a crack

X=*a, in both o, and o,,. The singularity in the crack- . . ; . : e

opening stres vy is often remedied by assuming the ex- " & nearly elastic solid, one might consider the tantalizing
op 9 Tyy y ass 9 ossibility of macroscopically driven, oscillatory crack mo-
istence of a cohesive zone near the crack tip, where an

tractive force between the faces of the crack balances the [22].

elastic stress and removes the singulgrit9]. The underly- | am grateful to J. Langer, G. Mazenko, S. Putterman, and
ing elastic model(i.e., without the cohesive zopheorre- Z. Suo for comments and criticisms. This work is supported
sponds to a singular limit of the solutiorid)—(3) above, by the ITP’'s NSF Grant No. 94-07194.
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