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Brittleness, ductility, and the Griffith crack

Ritva Löfstedt
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

~Received 10 October 1996!

The material properties which determine whether a solid will fail by brittle fracture or ductile deformation
are theoretically investigated by including the leading-order dissipative term describing plastic flow in the
equations of elasticity. In particular, this term yields a time scale for the blunting of the elastic crack tip
described by Griffith. This time scale is compared to the elastic response time of a solid to determine whether
the solid will sustain the high stresses characteristic of a crack tip or will plastically relax the elastic strains.
These dissipative equations of elasticity also describe the ‘‘work-hardened’’ state of a solid, where brittle
fracture becomes possible in an originally ductile solid.@S1063-651X~97!10406-8#

PACS number~s!: 05.70.Ln, 62.20.Hg, 62.20.Fe, 81.40.Lm
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Despite their obvious engineering relevance, the conc
of brittleness and ductility remain only empirically and ph
nomenologically defined. Brittle materials fail by crac
induced fracture while in ductile ones voids grow, coales
and multiply to weaken the solid. In an effort to quantify th
difference, this paper discusses the stability of a crack
against plastic deformation. By including the leading-ord
dissipative term characteristic of elastic solids, the time sc
appropriate to plastic relaxation of the elastic strains a
crack tip is compared to the speed of the elastic respo
itself. This comparison determines whether the large stre
characteristic of brittle fracture can be sustained in the s
or whether the solid yields plastically to the externally im
posed forces. In addition the dissipative term in elastic
admits a solution which describes a ‘‘work-hardened’’ sta
where brittle fracture can occur even in an originally duct
solid.

The modern theory of fracture mechanics is based on
calculation by Inglis@1# of the stresses and strains surroun
ing an elliptical hole in an elastic plane stressed at infin
His solution indicates the geometrical enhancement of
externally imposed stress at the tips of the elliptical sha
Griffith @2# used this solution to analyze the strength of m
terials, which most frequently fracture at imposed stres
orders of magnitude below the theoretically predicted valu
Griffith postulated that microscopic flaws, in the form
cracks, focus the applied tension to exceed the ela
strength of the solid and cause the failure of the material.
comparing the observed and calculated tensile strength
glass, Griffith reconciled these observations by calculat
the typical size of intrinsic flaws.

The Inglis solution, as presented in elliptical coordina
defined byx1 iy5c cosh(a1ib), wherec is the focal length
of the ellipse, is as follows:

saa5T
sinh2a~cosh2a2cosh2a0!

~cosh2a2cos2b!2
, ~1!

sbb5T
sinh2a~cosh2a1cosh2a022cos2b!

~cosh2a2cos2b!2
, ~2!

sab5T
sin2b~cosh2a2cosh2a0!

~cosh2a2cos2b!2
, ~3!
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where s i j is the force in thej direction per unit surface
perpendicular to thei direction,T is the ~isotropic! tension
imposed at infinity, anda0 denotes the surface of the ellip
tical void. These solutions satisfy the boundary conditions
vanishing shear stress and perpendicular stress at the su
and correspond to displacements given by

dRa5
1

h

c2T

8m
@~p21!cosh2a2~p11!cos2b12 cosh2a0#

~4!

anddRb50. Hereh is the modulus of the transformation t
elliptical coordinates, viz.,h5cA(cosh2a2cos2b)/2, m is
the shear modulus of the material, andp5324s for plane
strain, wheres is Poisson’s ratio. This solution is depicted
Fig. 1.

The stress concentration is apparent by evaluatingsbb ,
Eq. ~2!, at the tip of the ellipse~a5a0 , b50!, which finds
sbb52Ta/b, wherea andb are the major and minor axe
of the ellipse, respectively. As the ellipse becomes m
slender, the stress concentration at the tip grows larger.
stress in the perpendicular direction (saa) is forced to van-
ish right at the surface, but one can readily use the solu
~1! above to calculate where this stress reaches its maxim
For slender ellipses, the maximum stress along the m
axis is reached ata5a01(11))b/a, and theresaa
'T(2a/9b). As the ellipse becomes more cracklike, t

FIG. 1. The Inglis solution for an elliptical void in a uniformly
stressed plane. The stress at infinity is amplified at the crack
where the tensile stress reaches a maximum 2T(a/b). The perpen-
dicular stress is forced to vanish at the surface, but for sufficie
narrow ellipses reaches a maximum value ofT(2a/9b) just ahead
of the crack tip.
6726 © 1997 The American Physical Society
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55 6727BRITTLENESS, DUCTILITY, AND THE GRIFFITH CRACK
point of maximum stress in the perpendicular directi
moves closer to the surface, but the maximum stress in
perpendicular direction remains smaller than the maxim
tensile stress. In Griffith’s model of fracture, the crack a
sumes an aspect ratio (a/b) such that the tensile stress at t
crack tip precisely equals the cohesive strength of the so
i.e., a/b'mc /T, wheremc is the cohesive strength of th
solid. If the cohesive strength scales as the bulk modulus
assumption supported by both measurements and sim
phenomenological arguments for the strength of a solid,
relation simplifies toa/b'm/T. This latter criterion for the
aspect ratio is also the one set by requiring that in the
sence of external forces the solid should close up and
come whole. This translates into setting the displacemen
the solid at the end of the minor axis~a5a0 , b5p/2! equal
to its current locationb. Since Griffith’s experimental obser
vations found an experimental yield stress in glass roug
400 times smaller than the theoretically predicted one,
assumed that internal cracks focused the external stress
this amount. He then reasoned that intrinsic defects in
glass under investigation should have an aspect ratio of
order. By assuming that the smallest radius of curvaturerc
5(b2/a) possible in a solid corresponds to an atomic si
i.e., measured in A˚ ngströms, Griffith found that the intrinsic
cracks in his glass specimens were 1mm long.

Griffith’s model of fracture rests on the assumption th
the tendency for elastic solids is to focus large stresses
strains at the crack tip. However, beyond certain stress le
solids typically display plastic deformation@3# and resist in-
creasing strain, and even at low stress levels creep and r
ation mechanisms act to slowly diminish elastic stresses@4#.
To describe how elastic strains may be plastically rela
and to address the question of the stability of a crack
against plastic deformation I will include the leading-ord
dissipative term in the equations of elasticity. This ter
which describes the diffusion of dislocations through a so
depends both on the elastic stresses and on specific ma
properties, which may be rate and history dependent. O
these material-specific properties are identified, one can m
sure them in macroscopic experimental systems where p
tic effects form merely a perturbative correction to the elas
fields. Such systems include creep experiments which m
sure the slow plastic deformation due to small longitudin
torsional, and bending loads. Given the elastic solut
which describes a crack Eqs.@~1!–~4!# and the~experimen-
tally measured! dissipative equations of state one can det
mine whether elastic or plastic effects dominate at the cr
tip. Specifically one might predict the circumstances un
which an elliptical shape will sharpen towards the crackl
limit or blunt so as to prevent brittle fracture.

Equations~1!–~4! above are solutions to the classic
equations of elasticity@5#:

]r

]t
1¹W •rnW 50, ~5!

which expresses conservation of mass,

]rn i
]t

1
]

]r j
~rn in j1Pd i j1t i j !50, ~6!
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which expresses conservation of momentum,

]rs

]t
1¹W •rsnW 50, ~7!

which expresses conservation of entropy, and

]Ri

]t
1~nW •¹W !Ri50, ~8!

which describes how the lattice distorts. In these equatio
r(rW,t) is the density,nW (rW,t) is the velocity,s(rW,t) is the
entropy per gram, andRW (rW,t) is the position at time 0 of a
lattice point which at timet is at rW. By requiring energy
conservation, one can derive expressions for the pressu

P5k¹W •~RW 2rW !,

and the shear stress tensor,

t i j5mS ]Ri

]r j
1

]Rj

]r i
2
2

3
~¹W •RW !d i j D ,

wherek andm are the bulk and shear moduli, respective
In Eqs. ~1!–~4!, s i j5Pd i j1t i j and dRW 5rW2RW . The equa-
tions of elasticity, Eqs.~5!–~8!, differ from the Euler equa-
tions of fluid mechanics by the existence of the shear st
tensor, and the subsequent need for Eq.~8! to close the equa-
tions.

Eckart@6# introduced a general method of calculating t
lowest-order dissipative fluxes corresponding to a mac
scopic continuum theory by requiring that energy be co
served and that entropy production be positive. For an E
rian fluid, this method yields the familiar terms describin
viscosity and thermal conductivity, and thus ‘‘derives’’ th
Navier-Stokes equations. Applied to the equations of elas
ity, this method yields in addition to viscosity and therm
conductivity, which shall henceforth be neglected, a damp
term unique to solids@6–8# which modifies Eq.~7! as

]rs

]t
1¹W •rsnW 5dS ]t i j

]r j
D 2, ~9!

and Eq.~8! as

]Ri

]t
1~nW •¹W !Ri5d

]t i j
]r j

. ~10!

Hered is a diffusion constant, which we assume is prop
tional to the number of dislocations in the solid, so tha
perfect lattice will not plastically distort. This additional term
describes the diffusion of dislocations through the latti
which flow in response to gradients in the shear stress.@Note
that in Eqs.~9! and ~10! viscoelastic terms, which imply an
exponential relaxation of elastic shear stresses on some c
acteristic time scale, have been suppressed. The viscoe
dissipative terms, which follow from thermodynamic arg
ments similar to those above@6,8#, render the elastic solid
unable to maintain any shear stress. In that sense, Eqs~9!
and ~10! represent the leading-order dissipative contribut
to the robust elastic solid state, which supports a unifo
shear; that is the regime of interest for this analysis.#
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Since Eq.~10! contains a higher derivative than the orig
nal equation, one needs also to specify a new boundary
dition. To lowest order in the strains, one can rewrite E
~10! as

n i52
]Ri

]t
1d

]t i j
]r j

. ~11!

In order that the surface of the solid be unambiguously
fined, we take as the boundary condition,

ns'52S ]R'

]t D
surface

5 l̇ , ~12!

where ns' is the perpendicular component of the surfa
velocity andl is the dimension of the solid body. By cont
nuity, Eq. ~5!,

ns'5n'~surface!, ~13!

the perpendicular component of the bulk velocity evalua
at the surface. Combining Eqs.~10!–~12! yields

dS ]t' j

]r j
D
surface

50, ~14!

the dissipative term is required to vanish at the surface. O
way to satisfy this condition is by lettingd→0 at the surface,
which states that the dislocations annihilate as they hit
surface. The formal solution to elasticity with a small plas
flow is obtained by putting Eq.~11! into Eqs.~5!, ~6!, and~9!
to obtain a closed theory forRW , r, ands.

Subject to the boundary condition~14! one can solve for
the dissipative flow inherent in the Inglis solution by puttin
Eq. ~4! into Eq. ~11!:

na52
md

h5
c4T

8m
~cosh2a cos2b21!S 143 2

2

3
pD , ~15!

nb52
md

h5
c4T

8m
~sinh2a sin2b!S 143 2

2

3
pD . ~16!

Here the tendency of the plastic flow is to distort the ellip
cal shape into a circular one~Fig. 2!. The rate of blunting of

FIG. 2. The plastic flow associated with the Inglis crack. T
tendency of the plastic flow is to deform the elliptical void into
circle, which acts to blunt the crack tip. The rate of blunting at
crack tip is approximately given bya/ȧ'b2/md. If this time scale
is shorter than the elastic response time, the solid will not suppo
crack and will deform in a ductile, rather than brittle, fashion.
n-
.

-

d

e

e

the crack tip itself is

na~a5a0 ,b50!5ȧ52
md

4

T

m

c2

b3 S 143 2
2

3
pD . ~17!

The time scale associated with rate of decrease of the te
stress at the tip of a narrow crack (a@b) is given by

sbb

ṡbb
'
a

ȧ
'
a2T2

dmc
3 . ~18!

If one scales the cohesive strength with the bulk modu
this simplifies toa/ȧ'b2/md. Clearly, depending on the
value of d, plastic effects resist the sharpness of the cra
tip; the value of the diffusion constant sets the time scale
which plastic effects dominate elastic ones and elimin
stress singularities. Elastic responses can be estimate
travel at the speed of sound in the material, with a char
teristic time scale given bya/cs , wherecs is the speed of
sound in the solid. For most solids the time scale for ela
response of a micrometer-sized crack is about a nanosec
If the elastic response is much more rapid than the diss
tive one, the solid will behave as a brittle one. If dissipati
dominates, the high elastic stress concentrations such
those characterizing a crack tip will never be realized. T
ratio of these time scales determines a measure of the rel
degree of brittleness of a material; namely, if

aT2cs
dmc

3 .1, ~19!

the material is brittle, and if the inequality is of opposi
sense, the material is ductile. Note that as the cohe
strength of the solid increases the material becomes m
ductile, and asd, the measure of inelastic deformation, i
creases, the material also becomes more ductile. Finally
fixed material parameters, a larger geometric crack size
make the solid behave in a more brittle fashion. In fatig
experiments@9#, the ductile time scale~18! should be com-
pared to the frequency with which the externally appli
stress is ramped up and down. If the periods are sufficie
long that elastic strains can be relaxed during the low-str
phase, brittle fracture will be suppressed.

A different approach to the issue of distinguishing brittl
ness and ductility, pioneered by Armstrong@10#, compares
the stress necessary to propagate a Griffith crack by clea
to the stress required to nucleate dislocation loops at
crack tip. The comparison yields the dimensionless para
eter g/mbd , whereg is the surface energy andbd is the
Burgers vector of the dislocation, which scales as the lat
spacing. The greater this Armstrong ratio, the more duc
the crystal, and vice versa. This comparison involves ch
acterizing the microscopic nature of the cohesive forces
the dislocation structures, and the parameter rather succ
fully encapsulates the macroscopic effects of changes a
microstructural level. However, its extension to syste
lacking crystalline symmetry is unclear, and the experim
tal determination of the microscopic parameters involved
nontrivial.

Independently, Kelly, Tyson, and Cottrell@11# defined the
relative brittleness of a crystal by comparing the maximu

a
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55 6729BRITTLENESS, DUCTILITY, AND THE GRIFFITH CRACK
tensile stress and the maximum shear stress achieved
given apparatus as the external load was increased. Dep
ing on the load conditions and the crystalline structure,
crystal’s cohesive strength or ideal shear strength would
reached first, resulting, respectively, in cleavage or pla
deformation. Rice and Thomson@12# explicitly modeled the
production of a blunting dislocation at the crack tip~such
that its slip plane contains the crack line!. Their model speci-
fies a mechanism by which the competition between cr
propagation and plastic crack tip blunting can take place,
their rigorous calculation of this mechanism recovers
Armstrong criterion:

g

mbd
.7–10 ~20!

for ductile fracture. More recent approaches@13# generalize
the Rice-Thomson calculation to consider geometrical
pects of dislocation emission and external loading via
Peierls-Nabarro framework. Introduction of the ‘‘unstab
stacking energy’’ as a parameter determining the energy
rier to dislocation emission introduces the opportunity
atomistic refinements of the Rice-Thomson criterion abo
The competition between brittle cleavage and dislocat
emission has also been considered in dynamic fracture@14#.

The expressions~20! and ~19! above predict similar de
pendence of the brittleness of a solid on, e.g., the cohe
strength of the material, but Eq.~20! explicitly depends on
the microscopic dislocation size. The constantd in Eqs.~18!
and~19! above can presumably be written in terms of mic
scopic parameters for specific materials, but has been
duced from strictly thermodynamic, macroscopic reason
Thus the value ofd can be determined from a simpler e
periment, such as the creep of a bar under its own wei
where the stresses are low and the system is well descr
by elasticity, modified by a small dissipative correction. T
rate of decrease of the height of a solid in a gravitational fi
@15#, which is derived by using the solutions to Eq.~5!–~7!
above and putting that solution into Eq.~11!, is

l̇'2d
4

3

mrg

E
~11s!, ~21!

wherel is the height of the bar andE is Young’s modulus.
Measurement of the rate of creep of the bar thus yieldsd,
which then sets the time scale in Eq.~18! for given crack
dimensions. Rayleigh@16# observed that certain heat-treat
specimens of marble, including some mantelpieces, wo
creep under their own weight on a time scale of weeks, w
most marble samples showed no evidence of such defo
tion. Using Rayleigh’s observations on the creep of suc
marble mantelpiece@16# to find d from Eq. ~21! and Grif-
fith’s estimate of the crack dimensions of intrinsic flaws
Eq. ~18!, one finds that the time scale for cracks to blunt
measured in picoseconds. That implies that specimen
such heat-treated marble should be considered candidate
failure by ductile deformation rather than by brittle fractur
which characterizes most marble. The observation of the
ging of lead pipes@17# over time leads to an estimate of th
crack-blunting time scale of tens of picoseconds and to
classification of pure lead as a ductile material. In steel
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diffusion constant is much lower; time-depende
deformation-mechanism maps for Type 316 stainless s
@17# suggest that the relevant time scale is microseconds,
therefore the transition from ductile to brittle behavior
fatigue experiments should occur at MHz frequencies.
these examples we have used values ford obtained at low
stresses to estimate the response of a highly stressed re
In fact, if d is itself a function of the stress, the value whic
pertains to the crack tip differs from that measured in a cr
experiment. However, the plastic deformation described
Eqs. ~15! and ~16! is a bulk flow phenomenon, involving
regions of both high and low stress, and therefore the ef
tive d, which is an average over an area much greater t
the crack tip, should be reasonably well estimated by
creep-determinedd.

The observation in many materials of a hardening tran
tion from ductile to brittle behavior@3# as a solid is repeti-
tively stressed suggests that the above formalism is con
tually incomplete. However, rather than applying t
boundary condition above, which assumes that the conc
tration of dislocations vanishes at the surface of the cra
one can consider the scenario where dislocations cannot
through the surface and annihilate. In this case we supp
that dislocations build up in a surface layer, so thatd does
not vanish at the surface. Then the boundary condition~14!
implies that]t' j /]r j50 at the surface. In addition the ex
istence of such a surface layer implies that there is a disc
tinuity in the perpendicular stress at the surface. If one sol
the equations of elasticity for the equilibrium of an elliptic
hole in a uniformly stressed plane, subject to the bound
conditions of vanishing shear stress and vanishing perp
dicular gradient of the shear stress on the surface, the In
solution ~1!–~4! is replaced by

saa5
T

2

sinh2a

~cosh2a2cos2b!2 S 2 cosh2a12
1

3
~p21!

3cosh2a01
1

3
~p27!cos2b D , ~22!

sbb5
T

2

sinh2a

~cosh2a2cos2b!2 S 2 cosh2a1
1

3
~p21!

3cosh2a012
1

3
~p15!cos2b D , ~23!

sab5
T

6
~p21!

sin2b~cosh2a2cosh2a0!

~cosh2a2cos2b!2
, ~24!

which corresponds to displacements of

dRa5
1

h

c2T~p21!

8m S cosh2a2
4

3
cos2b1

1

3
cosh2a0D

~25!

anddRb50. In the crack limit (a@b) both the perpendicu-
lar and tensile stresses at the crack tip become singular,

saa~a5a0 ,b50!'
~72p!

6
T
a

b
, ~26!
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sbb~a5a0 ,b50!'
~p15!

6
T
a

b
, ~27!

but sincep'2 for most materials, the tensile stress exce
the perpendicular one.

The plastic flow associated with this solution which
obtained by using Eq.~25! in Eq. ~11! vanishes identically.
Thus when the boundary maintains a finite, steady distri
tion of dislocations, the resultant elastic field in the so
resists plastic deformation. This ‘‘hardened’’ state is th
susceptible to fracture, since the stresses concentrated a
crack tip cannot be dissipated, and the dynamics are g
erned only by elastic forces. According to this model, t
transition from ductility to brittleness as observed in wo
hardening need not, therefore, involve a bulk transforma
of the material, but should be signaled by a detecta
defect-riddled surface. In such cases, Eqs.~22!–~25!, rather
than the Inglis solution~1!–~4!, should constitute the foun
dation of a theoretical investigation of fracture. A descripti
of the hardening transition itself is much more complicat
That would require incorporating into the creep equat
~11! a time-dependent diffusion constantd self-consistently
determined as a function of the elastic stresses as disl
tions accumulate in the solid.

Most modern approaches to fracture mechanics exp
the powerful mathematical techniques related to singular
tegral equations@18#. These approaches reduce the elliptic
void to a line, and apply the boundary conditions of vanis
ing shear stress and perpendicular stress to a segme
length 2c ~or equivalently 2a! of thex axis. These equation
imply a square-root stress singularity at the ends of the cr
x56a, in bothsyy andsxx . The singularity in the crack-
opening stress,syy , is often remedied by assuming the e
istence of a cohesive zone near the crack tip, where an
tractive force between the faces of the crack balances
elastic stress and removes the singularity@19#. The underly-
ing elastic model~i.e., without the cohesive zone! corre-
sponds to a singular limit of the solutions~1!–~3! above,
-
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n
the
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obtained by evaluating them ata050, b50, and then taking
a→a0 . In this limit the perpendicular stress atx56a no
longer vanishes; instead it is equal to the tensile stress
sxx5syy5Ta/b, which diverges since the aspect ratio
infinite. The equivalence of the tensile and perpendicu
stresses at the crack tip is an artifact of the awkward orde
limits taken in Eqs.~1!–~3! to approach the infinitesimally
wide crack, which occurs neither in the full Inglis solutio
@Eqs.~1!–~3!# nor in the work-hardened solution@Eqs.~22!–
~24!#. However, this equivalence is preserved in the~static!
cohesive zone model, which underlies many modern theo
of dynamic fracture, whose goal is to investigate instabilit
in crack propagation@20,21#. The artificial equivalence of
the tensile and perpendicular stresses in this elastic m
makes the direction of crack propagation ill defined. Clea
the instabilities in the direction of crack propagation whi
result from this ambiguity must be regarded as distinct fr
true, dynamical deviations of the crack propagation from
straight line.

The dynamic instabilities associated with a moving Ing
crack remain to be investigated. In particular, the speed
crack propagation provides yet another time scale w
which to compare the effects of plasticity on the elastic eq
tions. For sufficiently rapid crack propagation plastic effe
might distort the fractured trail of the solid, but never rea
the crack tip itself. The steady-state profile of a ‘‘crack tip
in a ductile solid might give insight into the workings o
failure by plastic deformation. One might ask whether t
work-hardened surface possesses a stable crack profile i
dynamic state and from an engineering perspective cons
effects of the environment, such as corrosion, on this pro
@9#. Finally, given the dynamic equations describing a cra
in a nearly elastic solid, one might consider the tantaliz
possibility of macroscopically driven, oscillatory crack m
tion @22#.
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